Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum.

نویسندگان

  • Robin C Ashmore
  • Marc A Sommer
چکیده

The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce "delay activity" between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delay activity of saccade-related neurons in the caudal dentate nucleus

21 The caudal dentate nucleus (DN) in lateral cerebellum is connected with two 22 visual/oculomotor areas of the cerebrum, the frontal eye field (FEF) and lateral 23 intraparietal (LIP) cortex. Many neurons in FEF and LIP produce “delay activity” 24 between stimulus and response that correlates with processes such as motor planning. 25 Our hypothesis was that caudal DN neurons would have promin...

متن کامل

Linear encoding of muscle activity in primary motor cortex and cerebellum.

The activity of neurons in primary motor cortex (M1) and cerebellum is known to correlate with extrinsic movement parameters, including hand position and velocity. Relatively few studies have addressed the encoding of intrinsic parameters, such as muscle activity. Here we applied a generalized regression analysis to describe the relationship of neurons in M1 and cerebellar dentate nucleus to el...

متن کامل

Neuronal activity dependent on anticipated and elapsed delay in macaque prefrontal cortex, frontal and supplementary eye fields, and premotor cortex.

In macaque monkeys performing a memory-guided saccade task for a reward of variable size, neuronal activity in several areas of frontal cortex is stronger when the monkey anticipates a larger reward. This effect might depend on either the size or the value of the reward. To distinguish between these possibilities, we recorded from neurons in frontal cortex while controlling value through a mani...

متن کامل

Discharge of monkey nucleus reticularis tegmenti pontis neurons changes during saccade adaptation.

Saccade accuracy is maintained by adaptive mechanisms that continually modify saccade amplitude to reduce dysmetria. Previous studies suggest that adaptation occurs upstream of the caudal fastigial nucleus (CFN), the output of the oculomotor cerebellar vermis but downstream from the superior colliculus (SC). The nucleus reticularis tegmenti pontis (NRTP) is a major source of afferents to both t...

متن کامل

The effect of cabergoline and levetiracetam on the histological and stereological structure of the cerebellar cortex, hippocampal and cerebellum in a model of PTZ-induced seizure kindling in rats

Background: Seizure is a chronic neurological disease that may have non-neurological origins such as astrocytes and microglia. Objective: The aim of this study was to investigate the effect of alone and co-administration of cabergoline and levetiracetam on the histological and stereological structure of the cerebral cortex, hippocampus and cerebellum following chronic seizures in rat. Methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 109 8  شماره 

صفحات  -

تاریخ انتشار 2013